Lean software development is a translation of Lean manufacturing and Lean IT principles and practices to the software development domain.
Lean development could be summarized by seven principles, very close in concept to lean manufacturing principles.
Eliminate waste
Everything not adding value to the customer is considered to be waste (muda). This includes:
• unnecessary code and functionality
• delay in the software development process
• unclear requirements
• bureaucracy
• slow internal communication
In order to be able to eliminate waste, one should be able to recognize and see it. If some activity could be bypassed or the result could be achieved without it, it is waste. Partially done coding eventually abandoned during the development process is waste. Extra processes and features not often used by customers are waste. Waiting for other activities, teams, processes is waste. Defects and lower quality are waste. Managerial overhead not producing real value is waste. A value stream mapping technique is used to distinguish and recognize waste. The second step is to point out sources of waste and eliminate them. The same should be done iteratively until even essential-seeming processes and procedures are liquidated.
Amplify learning
Software development is a continuous learning process with the additional challenge of development teams and end product sizes. The best approach for improving a software development environment is to amplify learning. The accumulation of defects should be prevented by running tests as soon as the code is written. Instead of adding more documentation or detailed planning, different ideas could be tried by writing code and building. The process of user requirements gathering could be simplified by presenting screens to the end-users and getting their input.
Decide as late as possible
As software development is always associated with some uncertainty, better results should be achieved with an options-based approach, delaying decisions as much as possible until they can be made based on facts and not on uncertain assumptions and predictions. The more complex a system is, the more capacity for change should be built into it, thus enabling the delay of important and crucial commitments. The iterative approach promotes this principle – the ability to adapt to changes and correct mistakes, which might be very costly if discovered after the release of the system.
Deliver as fast as possible
In the era of rapid technology evolution, it is not the biggest that survives, but the fastest. The sooner the end product is delivered without considerable defect, the sooner feedback can be received, and incorporated into the next iteration. The shorter the iterations, the better the learning and communication within the team. Without speed, decisions cannot be delayed. Speed assures the fulfilling of the customer's present needs and not what they required yesterday. This gives them the opportunity to delay making up their minds about what they really require until they gain better knowledge. Customers value rapid delivery of a quality product.
Empower the team
There has been a traditional belief in most businesses about the decision-making in the organisation – the managers tell the workers how to do their own job. In a Work-Out technique, the roles are turned – the managers are taught how to listen to the developers, so they can explain better what actions might be taken, as well as provide suggestions for improvements. Most experienced project managers have simply stated the key for a successful project – "Find good people and let them do their own job."
Build integrity in
The customer needs to have an overall experience of the System – this is the so called perceived integrity: how it is being advertised, delivered, deployed, accessed, how intuitive its use is, price and how well it solves problems.
Conceptual integrity means that the system’s separate components work well together as a whole with balance between flexibility, maintainability, efficiency, and responsiveness. This could be achieved by understanding the problem domain and solving it at the same time, not sequentially. The needed information is received in small batch pieces – not in one vast chunk with preferable face-to-face communication and not any written documentation. The information flow should be constant in both directions – from customer to developers and back, thus avoiding the large stressful amount of information after long development in isolation.
See the whole
Software systems nowadays are not simply the sum of their parts, but also the product of their interactions. Defects in software tend to accumulate during the development process – by decomposing the big tasks into smaller tasks, and by standardizing different stages of development, the root causes of defects should be found and eliminated. The larger the system, the more organizations that are involved in its development and the more parts are developed by different teams, the greater the importance of having well defined relationships between different vendors, in order to produce a system with smoothly interacting components. During a longer period of development, a stronger sub- contractor network is far more beneficial than short-term profit optimizing, which does not enable win-win relationships.
Thursday, August 5, 2010
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment